knitr::opts_chunk$set(echo = TRUE)
library(reticulate)
library(dplyr)
reticulate::use_condaenv("~/r-reticulate")
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
For a quick demo, see: https://medium.com/save-the-data/how-to-use-python-in-r-with-reticulate-and-conda-36685534f06a
data("iris")
iris_df <- iris
iris_dataset = r.iris_df
iris_dataset["Species"].describe()
## count 150
## unique 3
## top setosa
## freq 50
## Name: Species, dtype: object
plt.clf()
sb.set_style("ticks")
#sb.set_context("paper")
iris_dataset["Species"].describe()
## count 150
## unique 3
## top setosa
## freq 50
## Name: Species, dtype: object
iris_dataset["Petal.Length"].describe()
## count 150.000000
## mean 3.758000
## std 1.765298
## min 1.000000
## 25% 1.600000
## 50% 4.350000
## 75% 5.100000
## max 6.900000
## Name: Petal.Length, dtype: float64
sb.boxplot(data = iris_dataset, x = "Species", y = "Petal.Length")
plt.show()
plt.clf()
sb.set_style("ticks")
#sb.set_context("paper")
p = sb.pairplot(iris_dataset, hue="Species")
plt.show()
data("starwars")
sw_df <- starwars
names(sw_df)
## [1] "name" "height" "mass" "hair_color" "skin_color"
## [6] "eye_color" "birth_year" "sex" "gender" "homeworld"
## [11] "species" "films" "vehicles" "starships"
sw_dataset = r.sw_df
sw_dataset["gender"].describe()
## count 87
## unique 3
## top masculine
## freq 66
## Name: gender, dtype: object
plt.clf()
sb.set_style("ticks")
#sb.set_context("paper")
sw_dataset["gender"].describe()
## count 87
## unique 3
## top masculine
## freq 66
## Name: gender, dtype: object
sw_dataset["mass"].describe()
## count 59.000000
## mean 97.311864
## std 169.457163
## min 15.000000
## 25% 55.600000
## 50% 79.000000
## 75% 84.500000
## max 1358.000000
## Name: mass, dtype: float64
sb.boxplot(data = sw_dataset, x = "gender", y = "mass")
plt.show()
plt.clf()
sb.set_style("ticks")
#sb.set_context("paper")
p2 = sb.pairplot(sw_dataset, hue="gender")
plt.show()