+ - 0:00:00
Notes for current slide
Notes for next slide

Data Prescription

Introducing R for Nursing Analytics

Dr. Bret Staudt Willet

December 18, 2024

1 / 58

View the slides:

bretsw.com/nursing24-workshop

2 / 58



Part 1:
Introduction to R

3 / 58

Our Constructivist Approach

4 / 58

Our Constructivist Approach

  1. I'll introduce some concepts
4 / 58

Our Constructivist Approach

  1. I'll introduce some concepts

  2. You'll try some code

4 / 58

Our Constructivist Approach

  1. I'll introduce some concepts

  2. You'll try some code

  3. We'll all discuss together

4 / 58

Our Constructivist Approach

  1. I'll introduce some concepts

  2. You'll try some code

  3. We'll all discuss together

4 / 58



Background
on R and RStudio

5 / 58

Why Learn R?

6 / 58

Why Learn R?

  • It is increasingly used in academia
6 / 58

Why Learn R?

  • It is increasingly used in academia

  • It is cross-platform, open-source, and freely-available

6 / 58

Why Learn R?

  • It is increasingly used in academia

  • It is cross-platform, open-source, and freely-available

  • It is a programming language and quite flexible

6 / 58

Why Learn R?

  • It is increasingly used in academia

  • It is cross-platform, open-source, and freely-available

  • It is a programming language and quite flexible

  • It is capable of carrying out basic and complex statistical analyses

6 / 58

Why Learn R?

  • It is increasingly used in academia

  • It is cross-platform, open-source, and freely-available

  • It is a programming language and quite flexible

  • It is capable of carrying out basic and complex statistical analyses

  • It is able to work with data small (n = 10) and large (n = 1,000,000+) efficiently

6 / 58

Why Learn R?

  • It is increasingly used in academia

  • It is cross-platform, open-source, and freely-available

  • It is a programming language and quite flexible

  • It is capable of carrying out basic and complex statistical analyses

  • It is able to work with data small (n = 10) and large (n = 1,000,000+) efficiently

  • There is a great, inclusive community of users and developers

6 / 58

Setting up R

To download R

  • Visit cran.r-project.org to download R
  • Find your operating system (Mac, Windows, or Linux)
  • Download the 'latest release' on the page for your operating system and download and install the application
7 / 58

Setting up R

To download R

  • Visit cran.r-project.org to download R
  • Find your operating system (Mac, Windows, or Linux)
  • Download the 'latest release' on the page for your operating system and download and install the application

To download RStudio Desktop

  • Visit posit.co to download RStudio Desktop from the parent company, Posit
  • Find your operating system (Mac, Windows, or Linux)
  • Download the 'latest release' on the page for your operating system and download and install the application
7 / 58

Setting up R

To download R

  • Visit cran.r-project.org to download R
  • Find your operating system (Mac, Windows, or Linux)
  • Download the 'latest release' on the page for your operating system and download and install the application

To download RStudio Desktop

  • Visit posit.co to download RStudio Desktop from the parent company, Posit
  • Find your operating system (Mac, Windows, or Linux)
  • Download the 'latest release' on the page for your operating system and download and install the application

RMarkdown

  • RMarkdown is a data analysis "notebook" that combines text with code and output
  • It is a great file type to use when beginning to use R and to create reproducible analyses
  • It is fun to use because you can generate different types of output (Word, PDF, and even web-based)
7 / 58

Try it Out!

8 / 58

Try it Out!

What do you think this code will do?

starwars
9 / 58

Try it Out!

Let's see!

starwars
## # A tibble: 87 × 14
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 Luke Sk… 172 77 blond fair blue 19 male mascu…
## 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
## 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
## 4 Darth V… 202 136 none white yellow 41.9 male mascu…
## 5 Leia Or… 150 49 brown light brown 19 fema… femin…
## 6 Owen La… 178 120 brown, gr… light blue 52 male mascu…
## 7 Beru Wh… 165 75 brown light blue 47 fema… femin…
## 8 R5-D4 97 32 <NA> white, red red NA none mascu…
## 9 Biggs D… 183 84 black light brown 24 male mascu…
## 10 Obi-Wan… 182 77 auburn, w… fair blue-gray 57 male mascu…
## # ℹ 77 more rows
## # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>
10 / 58

Try it Out!

What do you think this code will do?

glimpse(starwars)
11 / 58

Try it Out!

Let's see!

glimpse(starwars)
## Rows: 87
## Columns: 14
## $ name <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Leia Or…
## $ height <int> 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188, 180, 2…
## $ mass <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 84.0, 77.…
## $ hair_color <chr> "blond", NA, NA, "none", "brown", "brown, grey", "brown", N…
## $ skin_color <chr> "fair", "gold", "white, blue", "white", "light", "light", "…
## $ eye_color <chr> "blue", "yellow", "red", "yellow", "brown", "blue", "blue",…
## $ birth_year <dbl> 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0, 57.0, …
## $ sex <chr> "male", "none", "none", "male", "female", "male", "female",…
## $ gender <chr> "masculine", "masculine", "masculine", "masculine", "femini…
## $ homeworld <chr> "Tatooine", "Tatooine", "Naboo", "Tatooine", "Alderaan", "T…
## $ species <chr> "Human", "Droid", "Droid", "Human", "Human", "Human", "Huma…
## $ films <list> <"A New Hope", "The Empire Strikes Back", "Return of the J…
## $ vehicles <list> <"Snowspeeder", "Imperial Speeder Bike">, <>, <>, <>, "Imp…
## $ starships <list> <"X-wing", "Imperial shuttle">, <>, <>, "TIE Advanced x1",…
12 / 58

Try it Out!

What do you think this code will do?

starwars %>%
filter(height <= 150) %>%
arrange(height) %>%
select(name, sex, height, mass, homeworld)
13 / 58

Try it Out!

Let's see!

starwars %>%
filter(height <= 120) %>%
arrange(height) %>%
select(name, sex, height, mass, homeworld)
## # A tibble: 8 × 5
## name sex height mass homeworld
## <chr> <chr> <int> <dbl> <chr>
## 1 Yoda male 66 17 <NA>
## 2 Ratts Tyerel male 79 15 Aleen Minor
## 3 Wicket Systri Warrick male 88 20 Endor
## 4 Dud Bolt male 94 45 Vulpter
## 5 R2-D2 none 96 32 Naboo
## 6 R4-P17 none 96 NA <NA>
## 7 R5-D4 none 97 32 Tatooine
## 8 Sebulba male 112 40 Malastare
14 / 58

Try it Out!

What do you think this code will do?

starwars %>%
unnest(starships) %>%
select(name, gender, starships) %>%
head(15)
15 / 58

Try it Out!

Let's see!

starwars %>%
unnest(starships) %>%
select(starships, name, gender) %>%
head(15)
## # A tibble: 15 × 3
## starships name gender
## <chr> <chr> <chr>
## 1 X-wing Luke Skywalker masculine
## 2 Imperial shuttle Luke Skywalker masculine
## 3 TIE Advanced x1 Darth Vader masculine
## 4 X-wing Biggs Darklighter masculine
## 5 Jedi starfighter Obi-Wan Kenobi masculine
## 6 Trade Federation cruiser Obi-Wan Kenobi masculine
## 7 Naboo star skiff Obi-Wan Kenobi masculine
## 8 Jedi Interceptor Obi-Wan Kenobi masculine
## 9 Belbullab-22 starfighter Obi-Wan Kenobi masculine
## 10 Naboo fighter Anakin Skywalker masculine
## 11 Trade Federation cruiser Anakin Skywalker masculine
## 12 Jedi Interceptor Anakin Skywalker masculine
## 13 Millennium Falcon Chewbacca masculine
## 14 Imperial shuttle Chewbacca masculine
## 15 Millennium Falcon Han Solo masculine
16 / 58

Try it Out!

What do you think this code will do?

starwars %>%
unnest(starships) %>%
mutate(vehicles = strsplit(starships, ",")) %>%
unnest(starships) %>%
select(name, gender, starships) %>%
group_by(gender) %>%
count()
17 / 58

Try it Out!

Let's see!

starwars %>%
unnest(starships) %>%
mutate(vehicles = strsplit(starships, ",")) %>%
unnest(starships) %>%
select(name, gender, starships) %>%
group_by(gender) %>%
count() %>%
arrange(desc(n))
## # A tibble: 3 × 2
## # Groups: gender [3]
## gender n
## <chr> <int>
## 1 masculine 26
## 2 feminine 3
## 3 <NA> 2
18 / 58

Visualizing Data

starwars %>%
ggplot() +
geom_point(aes(x = mass, y = height, color = gender))

19 / 58



Part 2:
Fitbit Data

20 / 58



Set up the
Fitbit API

Step 1: Register a Fitbit developer app

This example of health analytics utilizes the {fitbitr} R package (Kaye, 2021). The functions in the package are relatively straightforward, but getting access to the Fitbit API set up is a bit tricky.

21 / 58



Set up the
Fitbit API

Step 1: Register a Fitbit developer app

The first thing to do is register a new Fitbit developer app at dev.fitbit.com.

22 / 58

Set up the Fitbit API

Step 1: Register a Fitbit developer app

Here's how I completed the form:


  • Application Name: r-health-tracker
  • Description: fitbitr script
  • Application Website URL: https://github.com/bretsw/fitbit (replace with your GitHub repo)
  • Organization: bretsw (replace with your GitHub user name)
  • Organization Website URL: https://github.com/bretsw/fitbit (replace with your GitHub repo)
  • Terms of Service URL: https://github.com/bretsw/fitbit (replace with your GitHub repo)
  • Privacy Policy URL: https://github.com/bretsw/fitbit (replace with your GitHub repo)
  • OAuth 2.0 Application Type: Personal
  • Redirct URL: http://localhost:1410/
  • Default Access Type: Read Only
23 / 58

Set up the Fitbit API

Step 1: Register a Fitbit developer app

I got a warning from the dev website that the redirect URL needs to be an https, but it needs to be in the exact format I have above, because this is how R is set up to take you back to your R console. If you have to, complete the initial form with https://localhost:1410/ initially, then go back and edit it before you run your R script.

Once you submit your Fitbit dev app, you will be taken to a webpage that lists your OAuth 2.0 Client ID and Client Secret.

24 / 58



Set up the
Fitbit API

Step 2: Record your dev app credentials

25 / 58

Set up the Fitbit API

Step 2: Record your dev app credentials

Be sure to make a copy of your Fitbit dev app OAuth 2.0 Client ID and Client Secret. I find it easiest to securely store these in my local R user environment. You can open this file with the command usethis::edit_r_environ() and then retrieve stored variables with Sys.getenv().

In my R script below, note that you should save your credentials in the form FITBIT_CLIENT_ID = XXXXXX and FITBIT_CLIENT_SECRET = XXXXXX.

Once you have your credentials stored, close the .Renviron file and quit out of R entirely. When you restart R, your credentials are ready to go. You can check if things are stored correctly by running: Sys.getenv('FITBIT_CLIENT_ID') and Sys.getenv('FITBIT_CLIENT_SECRET').

Just be sure that you don't share these credentials with anyone!

26 / 58



Set up the
Fitbit API

Step 3: Retrieve your Fitbit data

27 / 58

Set up the Fitbit API

Step 3: Retrieve your Fitbit data

fitbitr::generate_fitbitr_token(
app_name = Sys.getenv('FITBIT_APP_NAME'),
client_id = Sys.getenv('FITBIT_CLIENT_ID'),
client_secret = Sys.getenv('FITBIT_CLIENT_SECRET'),
callback = Sys.getenv('FITBIT_REDIRECT_URL'),
cache = FALSE
)
28 / 58



Try it Out!

29 / 58

Try it Out!

What do you think this code will do?

start_date <-
lubridate::mdy("12/01/2024") - lubridate::days(1094)
end_date <-
lubridate::mdy("12/01/2024")
steps_df <-
get_steps(start_date, end_date)
30 / 58

Try it Out!

Look at your daily steps

tail(steps_df, 15)
## # A tibble: 15 × 2
## date steps
## <date> <dbl>
## 1 2024-11-17 12815
## 2 2024-11-18 4123
## 3 2024-11-19 8120
## 4 2024-11-20 7895
## 5 2024-11-21 9340
## 6 2024-11-22 5913
## 7 2024-11-23 3793
## 8 2024-11-24 5958
## 9 2024-11-25 8504
## 10 2024-11-26 5596
## 11 2024-11-27 5505
## 12 2024-11-28 4927
## 13 2024-11-29 10361
## 14 2024-11-30 6436
## 15 2024-12-01 8648
31 / 58

Picture it!

steps_df %>%
ggplot(aes(x = date, y = steps)) +
geom_point()

32 / 58

Picture it!

steps_df %>%
ggplot(aes(x = date, y = steps)) +
geom_point() +
geom_smooth()

33 / 58

Picture it!

steps_df %>%
ggplot(aes(x = date, y = steps)) +
geom_point() +
geom_smooth() +
xlab(NULL) +
ylab("Steps per Day")

34 / 58

Picture it!

steps_df %>%
ggplot(aes(x = date, y = steps)) +
geom_point() +
geom_smooth() +
xlab(NULL) +
ylab("Steps per Day") +
ggtitle("Number of Daily Steps")

35 / 58

Picture it!

steps_df %>%
ggplot(aes(x = date, y = steps)) +
geom_point() +
geom_smooth() +
xlab(NULL) +
ylab("Steps per Day") +
ggtitle("Number of Daily Steps") +
theme_bw()

36 / 58

Picture it!

steps_df %>%
ggplot(aes(x = date, y = steps)) +
geom_point(color = "blue", alpha = 0.5) +
geom_smooth(color = "green") +
xlab(NULL) +
ylab("Steps per Day") +
ggtitle("Number of Daily Steps") +
theme_bw()

37 / 58

Picture it!

steps_df %>%
ggplot(aes(x = date, y = steps)) +
geom_point(color = "blue", alpha = 0.5) +
geom_smooth(color = "green") +
xlab(NULL) +
scale_y_continuous(labels = scales::comma) +
ylab("Steps per Day") +
ggtitle("Number of Daily Steps") +
theme_bw()

38 / 58

Try it Out!

What do you think this code will do?

hr <- get_heart_rate_intraday(lubridate::mdy("11/28/2024"))
39 / 58

Try it Out!

Let's see!

head(hr, 15)
## # A tibble: 15 × 2
## time heart_rate
## <dttm> <dbl>
## 1 2024-11-28 08:59:56 70
## 2 2024-11-28 09:00:06 72
## 3 2024-11-28 09:00:11 82
## 4 2024-11-28 09:00:16 78
## 5 2024-11-28 09:00:26 79
## 6 2024-11-28 09:00:36 82
## 7 2024-11-28 09:00:41 83
## 8 2024-11-28 09:00:46 83
## 9 2024-11-28 09:01:01 89
## 10 2024-11-28 09:01:06 91
## 11 2024-11-28 09:01:11 88
## 12 2024-11-28 09:01:16 84
## 13 2024-11-28 09:01:21 81
## 14 2024-11-28 09:01:26 78
## 15 2024-11-28 09:01:31 74
40 / 58

Picture it!

ggplot(hr, aes(x = time, y = heart_rate)) +
geom_point(alpha = 0.5) +
geom_smooth() +
xlab(NULL) +
ylab("Beats per Minute") +
ggtitle("Thanksgiving Heart Rate") +
theme_bw()

41 / 58

Try it Out!

What do you think this code will do?

steps_intraday <- get_steps_intraday(lubridate::mdy("11/28/2024"))
42 / 58

Try it Out!

Let's see!

head(steps_intraday, 15)
## # A tibble: 15 × 2
## time steps
## <dttm> <dbl>
## 1 2024-11-28 00:00:00 0
## 2 2024-11-28 00:01:00 0
## 3 2024-11-28 00:02:00 0
## 4 2024-11-28 00:03:00 0
## 5 2024-11-28 00:04:00 0
## 6 2024-11-28 00:05:00 0
## 7 2024-11-28 00:06:00 0
## 8 2024-11-28 00:07:00 0
## 9 2024-11-28 00:08:00 0
## 10 2024-11-28 00:09:00 0
## 11 2024-11-28 00:10:00 0
## 12 2024-11-28 00:11:00 0
## 13 2024-11-28 00:12:00 0
## 14 2024-11-28 00:13:00 0
## 15 2024-11-28 00:14:00 0
43 / 58

Picture it!

ggplot(steps_intraday, aes(x = time, y = steps)) +
geom_point(alpha = 0.5) +
geom_smooth() +
xlab(NULL) +
ylab("Steps by Minute") +
ggtitle("Thanksgiving Steps") +
theme_bw()

44 / 58

Picture it!

ggplot(comparison_day, aes(x = steps, y = heart_rate)) +
geom_point() +
xlab("Steps per Minute") +
ylab("Beats per Minute") +
ggtitle("Heart Rate vs. Steps") +
theme_bw()

45 / 58

Try it Out!

What do you think this code will do?

activity_df <- get_activity_summary(lubridate::mdy("11/28/2024"))
46 / 58

Try it Out!

Let's see!

glimpse(activity_df)
## Rows: 1
## Columns: 12
## $ date <date> 2024-11-28
## $ calories_out <dbl> 2450
## $ activity_calories <dbl> 623
## $ calories_bmr <dbl> 1613
## $ active_score <dbl> -1
## $ steps <dbl> 4927
## $ sedentary_minutes <dbl> 1310
## $ lightly_active_minutes <dbl> 87
## $ fairly_active_minutes <dbl> 25
## $ very_active_minutes <dbl> 18
## $ marginal_calories <dbl> 573
## $ resting_heart_rate <dbl> 59
47 / 58

Try it Out!

What do you think this code will do?

health_df = NULL
for (i in 0:60) {
new_row =
tibble(date = lubridate::mdy("12/01/2024") - i,
resting_hr = get_activity_summary(date)$resting_heart_rate,
steps = get_activity_summary(date)$steps
)
health_df <-
health_df %>%
bind_rows(new_row)
}
48 / 58

Try it Out!

Let's see!

head(health_df, 15)
## # A tibble: 15 × 3
## date resting_hr steps
## <date> <dbl> <dbl>
## 1 2024-12-01 61 8648
## 2 2024-11-30 NA 6436
## 3 2024-11-29 NA 10361
## 4 2024-11-28 59 4927
## 5 2024-11-27 NA 5505
## 6 2024-11-26 NA 5596
## 7 2024-11-25 NA 8504
## 8 2024-11-24 58 5958
## 9 2024-11-23 58 3793
## 10 2024-11-22 NA 5913
## 11 2024-11-21 59 9340
## 12 2024-11-20 59 7895
## 13 2024-11-19 NA 8120
## 14 2024-11-18 59 4123
## 15 2024-11-17 NA 12815
49 / 58

Picture it!

ggplot(health_df, aes(x = date, y = resting_hr)) +
geom_point() +
geom_smooth() +
xlab(NULL) +
ylab("Beats per Minute while Resting") +
ggtitle("Resting Heart Rate") +
theme_bw()

50 / 58

Picture it!

ggplot(health_df, aes(x = steps, y = resting_hr)) +
geom_point() +
geom_smooth() +
xlab("Daily Steps") +
scale_x_continuous(labels = scales::comma) +
ylab("Beats per Minute while Resting") +
ggtitle("Resting Heart Rate vs. Daily Steps") +
theme_bw()

51 / 58

Picture it!

ggplot(health_df, aes(x = steps, y = resting_hr)) +
geom_point() +
geom_smooth() +
xlim(0, 15000) +
scale_x_continuous(label = scales::comma) +
xlab("Daily Steps") +
ylim(0, 70) +
ylab("Beats per Minute while Resting") +
ggtitle("Resting Heart Rate vs. Daily Steps") +
theme_bw()

52 / 58



Next Steps

53 / 58

Next Steps

54 / 58

Next Steps

54 / 58

Next Steps

54 / 58

Next Steps

  • Download a copy of this repository: https://github.com/bretsw/nursing24-workshop

  • If you have a Fitbit, see if you can retrieve and analyze your own data.

  • Regardless, use the saved data in the data folder to play around a bit more, changing different parameters.

54 / 58

Next Steps

  • Download a copy of this repository: https://github.com/bretsw/nursing24-workshop

  • If you have a Fitbit, see if you can retrieve and analyze your own data.

  • Regardless, use the saved data in the data folder to play around a bit more, changing different parameters.


Reflect:

54 / 58

Next Steps

  • Download a copy of this repository: https://github.com/bretsw/nursing24-workshop

  • If you have a Fitbit, see if you can retrieve and analyze your own data.

  • Regardless, use the saved data in the data folder to play around a bit more, changing different parameters.


Reflect:

  • What other comparisons might you make?
54 / 58

Next Steps

  • Download a copy of this repository: https://github.com/bretsw/nursing24-workshop

  • If you have a Fitbit, see if you can retrieve and analyze your own data.

  • Regardless, use the saved data in the data folder to play around a bit more, changing different parameters.


Reflect:

  • What other comparisons might you make?

  • How else might you analyze these Fitbit data?

54 / 58

Next Steps

  • Download a copy of this repository: https://github.com/bretsw/nursing24-workshop

  • If you have a Fitbit, see if you can retrieve and analyze your own data.

  • Regardless, use the saved data in the data folder to play around a bit more, changing different parameters.


Reflect:

  • What other comparisons might you make?

  • How else might you analyze these Fitbit data?

  • What data sources might you explore in your professional context?

54 / 58



Appendix:
Helpful Resources
and Troubleshooting

55 / 58

Troubleshooting

  • Try to find out what the specific problem is:
    • Identify what is not causing the problem
  • "Unplug and plug it back in" - restart R; close and reopen R
  • Seek out workshops and other learning opportunities
  • Reach out to others! Sharing what is causing an issue can often help to clarify the problem
  • Describe your woes to a GenAI chatbot (e.g., ChatGPT)
  • General strategies on learning more: Chapter 17 of Data Science in Education Using R
57 / 58

View the slides:

bretsw.com/nursing24-workshop

2 / 58
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow